A Component-wise EM Algorithm for Mixtures
نویسندگان
چکیده
In some situations, EM algorithm shows slow convergence problems. One possible reason is that standard procedures update the parameters simultaneously. In this paper we focus on nite mixture estimation. In this framework, we propose a component-wise EM, which updates the parameters sequentially. We give an interpretation of this procedure as a proximal point algorithm and use it to prove the convergence. Illustrative numerical experiments show how our algorithm compares to EM and a version of the SAGE algorithm.
منابع مشابه
An EM Algorithm for Independent Component Analysis in the Presence of Gaussian Noise
Abstract—An expectation-maximization (EM) algorithm for independent component analysis in the presence of gaussian noise is presented. The estimation of the conditional moments of the source posterior can be accomplished by maximum a posteriori estimation. The approximate conditional moments enable the development of an EM algorithm for inferring the most probable sources and learning the param...
متن کاملSpace Alternating Penalized Kullback Proximal Point Algorithms for Maximing Likelihood with Nondifferentiable Penalty
The EM algorithm is a widely used methodology for penalized likelihood estimation. Provable monotonicity and convergence are the hallmarks of the EM algorithm and these properties are well established for smooth likelihood and smooth penalty functions. However, many relaxed versions of variable selection penalties are not smooth. The goal of this paper is to introduce a new class of Space Alter...
متن کاملA Constrained EM Algorithm for Independent Component Analysis
We introduce a novel way of performing independent component analysis using a constrained version of the expectation-maximization (EM) algorithm. The source distributions are modeled as D one-dimensional mixtures of gaussians. The observed data are modeled as linear mixtures of the sources with additive, isotropic noise. This generative model is fit to the data using constrained EM. The simpler...
متن کاملAn EM algorithm for convolutive independent component analysis
In this paper, we address the problem of blind separation of convolutive mixtures of spatially and temporally independent sources modeled with mixtures of Gaussians. We present an EM algorithm to compute Maximum Likelihood estimates of both the separating filters and the source density parameters, whereas in the state-of-the-art separating filters are usually estimated with gradient descent tec...
متن کاملA block EM algorithm for multivariate skew normal and skew t-mixture models
Finite mixtures of skew distributions provide a flexible tool for modelling heterogeneous data with asymmetric distributional features. However, parameter estimation via the Expectation-Maximization (EM) algorithm can become very timeconsuming due to the complicated expressions involved in the E-step that are numerically expensive to evaluate. A more time-efficient implementation of the EM algo...
متن کامل